SIEVE THEORY 2015, PROF. ZEEV RUDNICK
 TAKE-HOME EXAM
 DUE DATE: JULY 15, 2015

Instructions: The assignment should be delivered to my mailbox or sent via email (rudnick@post.tau.ac.il) by Wednesday, 15 July 2015 at latest.

Exercise 1. For $N \geq 1$, the Farey sequence of level N is defined to be all rationals in $(0,1]$ which in reduced form have denominator at most N :

$$
\mathcal{F}_{N}=\left\{\frac{a}{q}: \operatorname{gcd}(a, q)=1,1 \leq a \leq q \leq N\right\}
$$

For instance, $\mathcal{F}_{5}=\left\{\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\}$. Show that

$$
\# \mathcal{F}_{N}=\frac{N^{2}}{2 \zeta(2)}+O(N \log N)
$$

Hint: $\varphi(n)=n \sum_{d \mid n} \mu(d) / d$.
Exercise 2. Show that

$$
\sum_{n \leq x} \Lambda(n)^{2}=x \log x-x+o(x)
$$

where $\Lambda(n)$ is the von Mangoldt function.
Exercise 3. A Carmichael number is a composite integer N for which $a^{N-1}=$ $1 \bmod N$ for all a coprime to N.
a) Show that if N is a Carmichael number, then N is odd, and that for all prime divisors $p \mid N$, we have $p-1 \mid N-1$ (this is a converse of Korselt's criterion).
b) Show that for $p>3$, if $p, q:=2 p-1$ and $r:=3 p-2$ are all prime, then their product $N=p q r$ is a Carmichael number.

Exercise 4. Show that the number of integers $n \leq x$ so that $n, 2 n-1,3 n-2$ are all primes, is at most $\ll x /(\log x)^{3}$.
Exercise 5. For a monic integer polynomial

$$
f(t)=t^{n}+a_{n-1} t+\cdots+a_{0}
$$

we define the height as $\operatorname{Ht}(f)=\max _{j}\left|a_{j}\right|$. We define

$$
\mathcal{R}_{n}(N)=\left\{f(t)=t^{n}+a_{n-1} t+\cdots+a_{0}: \operatorname{Ht}(f) \leq N ; \text { reducible over } \mathbb{Q}\right\}
$$

to be the set of reducible monic polynomial of degree n with integer coefficients, of height at most N. Show that for $n>2$,

$$
\# \mathcal{R}_{n}(N) \ll_{n} N^{n-\frac{1}{2}} \log N
$$

Hint: Use the large sieve in its n-dimensional form, where

$$
\Omega_{p}=\left\{f \in \mathbb{F}_{p}[t], \operatorname{deg} f=n, \text { monic irreducible over } \mathbb{F}_{p}\right\} .
$$

